## Communication

## A Stable Neutral Diborene Containing a BB Double Bond

Yuzhong Wang, Brandon Quillian, Pingrong Wei, Chaitanya S. Wannere, Yaoming Xie, R. Bruce King, Henry F. Schaefer, Paul v. R. Schleyer, and Gregory H. Robinson J. Am. Chem. Soc., 2007, 129 (41), 12412-12413• DOI: 10.1021/ja075932i • Publication Date (Web): 21 September 2007


## More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 12 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article


# A Stable Neutral Diborene Containing a B=B Double Bond 

Yuzhong Wang, Brandon Quillian, Pingrong Wei, Chaitanya S. Wannere, Yaoming Xie, R. Bruce King, Henry F. Schaefer, III, Paul v. R. Schleyer, and Gregory H. Robinson*

Department of Chemistry and the Center for Computational Chemistry, The University of Georgia, Athens, Georgia 30602-2556
Received August 7, 2007; E-mail: robinson@chem.uga.edu

While carbon-carbon double bonds (I) are ubiquitous the corresponding multiple-bond chemistry of boron, the group 13 neighbor of carbon, is undeveloped. ${ }^{1,2}$ Although the isoelectronic diboron dianions, $\left[\mathrm{R}_{2} \mathrm{BBR}_{2}\right]^{2-}(\mathrm{II})$, and their alkali metal salts were predicted two decades ago to be viable $\mathrm{B}=\mathrm{B}$ double-bond candidates, ${ }^{3}$ subsequent corroborating synthetic and structural efforts have been sparse. ${ }^{4-6}$ Neutral diborenes(2), based on the parent (III), are less attractive boron-boron double-bond alternatives as they have been predicted to be highly reactive, with triplet ground states and two one-electron $\pi$-bonds. ${ }^{7}$ Nevertheless, the synthesis and structural characterization of stabilized derivatives of (III) is a fascinating challenge. ${ }^{1,8}$ The electron deficiency of the boron atoms in (III) invites complexation by Lewis base ligands (IV).

(I)

(II)

(III)

(IV)

The analogy between neutral ligated $\mathrm{B}=\mathrm{B}$ double bonded compounds, (IV), and ethene derivatives ( $\mathbf{I}$ ) is compelling. Indeed, the isolobal relationship between CH and BCO groups has led to the extensive computational development of BCO chemistry. ${ }^{9}$ Thus, $\mathrm{OC}(\mathrm{H}) \mathrm{B}=\mathrm{B}(\mathrm{H}) \mathrm{CO}((\mathbf{I V}), \mathrm{L}:=\mathrm{CO})$ and ethene are isolobal. ${ }^{9 \mathrm{c}}$ The ethyne analogue, OCBBCO, has been characterized by FTIR in matrix isolation. ${ }^{2}$ Other Lewis bases, L: in (IV), particularly bulky, sterically demanding N -heterocyclic carbene (NHC) ligands, are quite intriguing owing to their high stability and strong electrondonor capabilities. ${ }^{10} \mathrm{We}$ now report the experimental realization and molecular structure ${ }^{11}$ of $\mathrm{R}(\mathrm{H}) \mathrm{B}=\mathrm{B}(\mathrm{H}) \mathrm{R}(\mathrm{R}=: \mathrm{C}\{\mathrm{N}(2,6-$ $\left.\left.\operatorname{Pr}^{i}{ }_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{CH}\right\}_{2}$ ), 3. Significantly, compound $\mathbf{3}$ is the first structurally characterized neutral diborene containing a $B=B$ double bond. The nature of this $\mathrm{B}=\mathrm{B}$ double bond is further delineated by density functional theory (DFT) computations.

We employed carbenes as stabilizing ligands in organo-group 13 chemistry over a decade ago with the synthesis and structural determination of $\mathrm{R}^{\prime}: \mathrm{M}\left(\mathrm{CH}_{3}\right)_{3}\left(\mathrm{R}^{\prime}=: \mathrm{C}\left\{\mathrm{N}\left(\mathrm{Pr}^{i}\right) \mathrm{C}\left(\mathrm{CH}_{3}\right)\right\}_{2} ; \mathrm{M}=\mathrm{Al}\right.$, $\mathrm{Ga}) .{ }^{12}$ Extending this work, we allowed $\mathrm{RBBr}_{3}, \mathbf{1},{ }^{11}$ to react with $\mathrm{KC}_{8}$ in diethyl ether and isolated two products: $2, \mathrm{R}(\mathrm{H})_{2} \mathrm{~B}-\mathrm{B}(\mathrm{H})_{2} \mathrm{R}$, as air-stable, colorless block crystals, and $\mathbf{3}$ as air-sensitive, orangered sheet-like crystals (eq 1 ).

$$
\begin{equation*}
\underset{\mathbf{1}}{\mathrm{RBBr}_{3} \xrightarrow[\mathrm{KC}_{2} \mathrm{O}]{ }} \mathrm{R}(\mathrm{H})_{2} \mathrm{~B}-\mathrm{B}(\mathrm{H})_{2} \mathrm{R}+\underset{\mathbf{3}}{\mathrm{R}(\mathrm{H}) \mathrm{B}}=\mathrm{B}(\mathrm{H}) \mathrm{R} \tag{1}
\end{equation*}
$$

The stoichiometric ratio of $\mathbf{1}$ to $\mathrm{KC}_{8}$ has been observed to affect the yield of $\mathbf{3}$. A higher yield of $\mathbf{3}$ ( $12 \%$ ) was obtained with a stoichiometric $\mathbf{1}: \mathrm{KC}_{8}$ ratio of 1:5.4. Greater amounts of $\mathrm{KC}_{8}$ decrease the yield of $\mathbf{3}$. At a $\mathbf{1}: \mathrm{KC}_{8}$ ratio of 1:9, only $\mathbf{2}$ was isolated. The unexpected formation of $\mathbf{2}$ and $\mathbf{3}$ appears to involve the well-


Figure 1. Molecular structure of 2 (thermal ellipsoids represent $30 \%$ probability; hydrogen atoms on carbon omitted for clarity). Selected bond distances $(\AA)$ and angles $(\mathrm{deg}): ~ \mathrm{~B}(1)-\mathrm{B}(1 \mathrm{~A}) 1.828(4), \mathrm{B}(1)-\mathrm{C}(1) 1.577(2)$, $\mathrm{B}(1)-\mathrm{H}(1) 1.155(18), \mathrm{B}(1)-\mathrm{H}(2) 1.147(19) ; \mathrm{B}(1 \mathrm{~A})-\mathrm{B}(1)-\mathrm{C}(1) 107.45(16)$, $\mathrm{B}(1 \mathrm{~A})-\mathrm{B}(1)-\mathrm{H}(1) 110.7(9), \mathrm{B}(1 \mathrm{~A})-\mathrm{B}(1)-\mathrm{H}(2) 110.3(9), \mathrm{C}(1)-\mathrm{B}(1)-$ $\mathrm{H}(1) 108.9(9), \mathrm{C}(1)-\mathrm{B}(1)-\mathrm{H}(2) 108.1(10), \mathrm{H}(1)-\mathrm{B}(1)-\mathrm{H}(2) 111.3(13)$.
documented hydrogen abstraction from ethereal solvents ${ }^{13}$ in the presence of alkali metals. ${ }^{14-16}$

We also prepared the carbene:borane adduct, $\mathrm{R}: \mathrm{BH}_{3}, 4$. The ${ }^{11} \mathrm{~B}$ NMR resonances of $4\left(\mathrm{RBH}_{3}\right), 2\left(\mathrm{R}(\mathrm{H})_{2} \mathrm{~B}-\mathrm{B}(\mathrm{H})_{2} \mathrm{R}\right)$, and 3 $(\mathrm{R}(\mathrm{H}) \mathrm{B}=\mathrm{B}(\mathrm{H}) \mathrm{R})$ are $-35.38,-31.62$, and +25.30 ppm , respectively. The ${ }^{11}$ B signal of $\mathbf{4}$ is a quartet ( $J_{\mathrm{BH}}=83.38 \mathrm{~Hz}$ ), while 2 displays a singlet with shoulders ( $w_{1 / 2}=188 \mathrm{~Hz}$ ) and $\mathbf{3}$ displays a broad singlet ( $w_{1 / 2}=946 \mathrm{~Hz}$ ). The ${ }^{1} \mathrm{H}$ NMR imidazole resonances of $\mathbf{4}, \mathbf{2}$, and $\mathbf{3}$ are $6.31,6.21$, and 6.14 ppm , respectively.

X-ray structural analysis reveals that $\mathbf{2}$ has a center of symmetry about the $(\mathrm{H})_{2} \mathrm{~B}-\mathrm{B}(\mathrm{H})_{2}$ core (Figure 1). The hydrides $(\mathrm{B}-\mathrm{H})$ in $\mathbf{2}$, 3, and $\mathbf{4}$ were located in the difference Fourier map. The B-B bond distance in $2(1.828(4) \AA)$ compares well to that computed for the CO-ligated analogue $\mathrm{OC}(\mathrm{H})_{2} \mathrm{BB}(\mathrm{H})_{2} \mathrm{CO}(1.819 \AA)^{9 \mathrm{c}}$ and to those in an activated $m$-terphenyl based diborate $(1.83(2) \AA)^{18}$ as well as a 2,3 -diboratabutadiene dianion $(1.859(8) \AA) .{ }^{19}$ However, the bond distance in $\mathbf{2}$ is longer than those in three-coordinate diboron compounds ( $1.682(16)$ to $1.762(11) \AA$ ). ${ }^{17}$ The boron atoms in 2 reside in tetrahedral geometries. The $\mathrm{N}_{2} \mathrm{C}_{3}$ ring of the NHC ligand is almost perpendicular to the $\mathrm{B}-\mathrm{B}-\mathrm{C}$ plane with a $\mathrm{N}(1)-$ $\mathrm{C}(1)-\mathrm{B}(1)-\mathrm{B}(1 \mathrm{~A})$ torsion angle of $-89.3^{\circ}$. The $\mathrm{B}-\mathrm{C}$ bond distance in $2(1.577(2) \AA$ ) is somewhat shorter than that in $\mathbf{1}$ (1.623(7) $\AA)$, but is similar to that in $\mathbf{4}(1.585(4) \AA)$.
$\mathbf{3}$ crystallizes in the orthorhombic space group $P 2_{1} 2_{1} 2_{1}$ (No. 19). Each asymmetric unit contains two independent, and nearly identical, molecules of $\mathbf{3}$ (Figure 2; only one molecule of $\mathbf{3}$ is shown). The $\mathrm{B}-\mathrm{C}$ bond distances, 1.547 (15) $\AA$ (av), are marginally shorter than those of $\mathbf{1}, \mathbf{2}$, and $\mathbf{4}$. Moreover, in contrast to 2, one $\mathrm{C}_{3} \mathrm{~N}_{2}$ carbene ring of $\mathbf{3}$ is nearly coplanar with the $\mathrm{B}_{2} \mathrm{H}_{2}$ core $(\mathrm{N}(1)-$ $\mathrm{C}(1)-\mathrm{B}(1)-\mathrm{B}(2)$ torsion angle, $-13.8^{\circ}$ ), while the other is staggered more $\left(\mathrm{N}(4)-\mathrm{C}(28)-\mathrm{B}(2)-\mathrm{B}(1)\right.$ torsion angle, $\left.-30.0^{\circ}\right)$. The


Figure 2. Molecular structure of $\mathbf{3}$ (thermal ellipsoids represent $30 \%$ probability; hydrogen atoms on carbon omitted for clarity). Selected bond distances $(\AA)$ and angles (deg): $\mathrm{B}(1)-\mathrm{B}(2) 1.561(18), \mathrm{B}(1)-\mathrm{C}(1) 1.543(15)$, $\mathrm{B}(1)-\mathrm{H}(1) 1.14(2), \mathrm{B}(2)-\mathrm{C}(28) 1.532(15), \mathrm{B}(2)-\mathrm{H}(2) 1.13(2) ; \mathrm{B}(2)-$ $\mathrm{B}(1)-\mathrm{C}(1) 128.3(12), \mathrm{B}(2)-\mathrm{B}(1)-\mathrm{H}(1)$ 124(4), $\mathrm{C}(1)-\mathrm{B}(1)-\mathrm{H}(1) 107(4)$, $\mathrm{B}(1)-\mathrm{B}(2)-\mathrm{C}(28) 126.1(12), \mathrm{B}(1)-\mathrm{B}(2)-\mathrm{H}(2) 128(4), \mathrm{C}(28)-\mathrm{B}(2)-\mathrm{H}(2)$ 105(4).


HOMO


HOMO-1

Figure 3. Representation of the HOMO and HOMO-1 orbitals of 3a.
three-coordinate boron atoms in $\mathbf{3}$ adopt trigonal planar geometries. The most notable feature of $\mathbf{3}$, however, is the $\mathrm{B}=\mathrm{B}$ bond. The $\mathrm{B}=\mathrm{B}$ bond distance of $1.560(18) \AA$ (av) in 3 is not only considerably shorter than the $B-B$ distance in 2 (1.828(4) $\AA$ ), but also shorter than those reported for $\left[\mathrm{Mes}_{2} \mathrm{BB}(\mathrm{Mes}) \mathrm{Ph}\right]^{2-}(1.636-$ (11) $\AA)^{4}$ and for $\left[\left\{\mathrm{Ph}\left(\mathrm{Me}_{2} \mathrm{~N}\right) \mathrm{BB}\left(\mathrm{NMe}_{2}\right) \mathrm{Ph}\right\}\right]^{2-}\left(1.627 \AA\right.$ (av)), ${ }^{5}$ which purportedly contained a "strong $B-B \pi$-bond". Furthermore, the $\mathrm{B}=\mathrm{B}$ bond distance in $\mathbf{3}$ compares well to those in dianionic tetra(amino)diborates (1.566(9) to $1.59(1) \AA)^{6}$ and to the computed $\mathrm{B}=\mathrm{B}$ bond lengths for the $\mathrm{OC}(\mathrm{H}) \mathrm{B}=\mathrm{B}(\mathrm{H}) \mathrm{CO}((\mathbf{I V}), \mathrm{L}:=\mathrm{CO})$ analogue ( $1.590 \AA)^{9 \mathrm{c}}$ and for diborene(2), (III) ${ }^{3}(1.498-1.515 \AA$ ). The computed B-B distance of $1.45 \AA$ reported for OCBBCO, a compound "with some triple bond character", is shorter. ${ }^{2,9 \mathrm{c}}$ Notably, the $\mathrm{B}-\mathrm{B}$ bond distance difference of $0.27 \AA$ between $\mathbf{2}$ and $\mathbf{3}$ is comparable to the corresponding difference (about $0.2 \AA$ ) between ethane and ethene. Likewise, the $\mathrm{C}-\mathrm{C}$ bond distance difference of $0.1 \AA$ between ethene and ethyne corresponds to the difference between 3 and OCBBCO $(0.11 \AA))^{2,9 c}$ Thus, the structural details of $\mathbf{3}$ are consistent with a $B=B$ double bond.

The nature of $\mathbf{3}$ was investigated by performing B3LYP/6$311+G^{* *}$ DFT computations ${ }^{20}$ on the simplified $R(H) B=B(H) R$ $\left(\mathrm{R}=: \mathrm{C}(\mathrm{NHCH})_{2}\right)$ model, 3a (Figure 3). Both 3a and the $\mathrm{OC}(\mathrm{H}) \mathrm{B}=$ $\mathrm{B}(\mathrm{H}) \mathrm{CO}((\mathbf{I V}), \mathrm{L}:=\mathrm{CO})$ analogue ${ }^{9 \mathrm{c}}$ are planar and have $C_{2 h}$ symmetry, whereas the corresponding $R$ moieties in $\mathbf{3}$ are twisted because of the greater steric demands of the very bulky N (aryl) ligands. The computed $\mathrm{B}-\mathrm{B}$ bond lengths in $\mathbf{3 a}$ ( $1.591 \AA$ ) and (IV) $(\mathrm{L}:=\mathrm{CO})(1.590 \AA)^{9 \mathrm{c}}$ are virtually identical and are close to the error bound of the corresponding experimental distance of $\mathbf{3}$ ( 1.561 (18) $\AA$ ). The $\mathrm{B}-\mathrm{C}$ length ( 1.547 (15) $\AA$ (av)) of $\mathbf{3}$ also agrees with the computed value ( $1.531 \AA$ ) for $\mathbf{3 a}$. Perhaps due to reduced steric repulsion between the ligands, the $\mathrm{B}-\mathrm{B}-\mathrm{C}$ bond angle in $\mathbf{3 a}\left(120^{\circ}\right)$ is less than the average value in $\mathbf{3}, 126.7(12)^{\circ}$.

The HOMO of $\mathbf{3 a}$ (Figure 3) is mainly a $\mathrm{B}-\mathrm{B} \pi$-bonding orbital involving the overlap of boron 2 p orbitals, while the HOMO-1 has mixed $\mathrm{B}-\mathrm{B}$ and $\mathrm{B}-\mathrm{H} \sigma$-bonding character. (A localized molecular
orbital (LMO) ${ }^{20}$ representation of the $\mathrm{B}-\mathrm{B} \sigma$ bond is shown in the Supporting Information). Natural bond orbital (NBO) electron occupancies of the $\mathrm{B}-\mathrm{B} \sigma$ - and $\pi$-bonding orbitals in 3a are 1.943 and 1.382 , respectively. The Wiberg and NLMO/NPA B-B bond indices, 1.408 and 1.656, respectively, also document the $B=B$ double bond character in 3a.

The computed boron-boron Wiberg bond indexes along the $\mathrm{OC}(\mathrm{H})_{2} \mathrm{~B}-\mathrm{B}(\mathrm{H})_{2} \mathrm{CO}$ (ethane-like), $\mathrm{OC}(\mathrm{H}) \mathrm{B}=\mathrm{B}(\mathrm{H}) \mathrm{CO}((\mathbf{I V}), \mathrm{L}:=$ CO ) (ethene-like), and OCBBCO (ethyne-like) series, $0.870,1.308$, and 1.953 , respectively, are instructive. The 1.0, $2.0,3.0$ unit bondorder values of the hydrocarbon series are not to be expected for the corresponding boron-boron analogues owing to the resonance contributions of Lewis structures. Nevertheless, the single-, double-, and triple-bond descriptions of boron-boron bonds discussed here are appropriate.
In summary, we have synthesized and characterized the first stable neutral diborene and computationally probed the nature of the novel boron-boron double bond. Related studies on the chemistry of boron-boron multiple bonds are ongoing.

Acknowledgment. We are grateful to the National Science Foundation (Grants CHE-0608142 and CHE-0209857) for support.

Note Added after ASAP Publication. After this paper was published ASAP September 21, 2007, production errors were fixed in the graphics showing structures (I)-(IV) and eq 1 . The corrected version was published ASAP September 25, 2007.
Supporting Information Available: Complete ref 20, full details of the syntheses, computations, and X-ray crystal determination, including the cif files. This material is available free of charge via the Internet at http://pubs.acs.org.

## References

(1) Cowley, A. H. J. Organomet. Chem. 2004, 689, 3866-3872.
(2) Zhou, M.; Tsumori, N.; Li, Z.; Fan, K.; Andrews, L.; Xu, Q. J. Am. Chem. Soc. 2002, 124, 12936-12937.
(3) Kaufmann, E.; Schleyer, P. v. R. Inorg. Chem. 1988, 27, 3987-3992.
(4) Moezzi, A.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 1992, 114, 2715-2717.
(5) Moezzi, A.; Bartlett, R. A.; Power, P. P. Angew. Chem., Int. Ed. 1992, 31, 1082-1083.
(6) Noth, H.; Knizek, J.; Ponikwar, W. Eur. J. Inorg. Chem. 1999, 19311937.
(7) (a) Dill, J. D.; Schleyer, P. v. R.; Pople, J. A. J. Am. Chem. Soc. 1975, 97, 3402-3409. (b) Krogh-Jespersen, K.; Cremer, D.; Dill, J. D.; Pople, J. A.; Schleyer, P. v. R. J. Am. Chem. Soc. 1981, 103, 2589-2594.
(8) Maier, C.-J.; Pritzkow, H.; Siebert, W. Angew. Chem., Int. Ed. 1999, 38, 1666-1668
(9) (a) Wu, H.-S.; Qin, X.-F.; Xu, X.-H.; Jiao, H. J.; Schleyer, P. v. R. J. Am. Chem. Soc. 2003, 125, 4248-4249. (b) Wu, H.-S.; Jiao, H. J.; Wang, Z. X.; Schleyer, P. v. R. J. Am. Chem. Soc. 2005, 127, 2334-2338. (c) Wang, Z.-X.; Chen, Z.; Jiao, H. J.; Schleyer, P. v. R. J. Theoret. Comput. Chem. 2005, 4, 669-688. (d) Qin, X.-F.; Wu, H.-S.; Jiao, H. J. J. Mol. Struct. (THEOCHEM) 2007, 810, 135-141. (e) Qin, X.-F.; Wu, H.-S.; Jiao, H. J. J. Mol. Model. 2007, 13, 927-935.
(10) (a) Scott, N. M.; Nolan, S. P. Eur. J. Inorg. Chem. 2005, 1815-1828. (b) Arduengo, A. J., III Acc. Chem. Res. 1999, 32, 913-921.
(11) See the Supporting Information for synthetic and crystallographic details.
(12) Li, X.-W.; Su, J.; Robinson, G. H. Chem. Commun. 1996, 2683-2684.
(13) Malatesta, V.; Ingold, K. U. J. Am. Chem. Soc. 1981, 103, 609-614.
(14) Smith, J. G.; Ho, I. J. Org. Chem. 1972, 37, 4260-4264.
(15) Cheng, T. C.; Headley, L.; Halasa, A. F. J. Am. Chem. Soc. 1971, 93, 1502-1503.
(16) Garst, J. F. Acc. Chem. Res. 1971, 4, 400-406.
(17) Moezzi, A.; Olmstead, M. M.; Power, P. P. J. Chem. Soc., Dalton Trans. 1992, 2429-2434.
(18) Grigsby, W. J.; Power, P. P. J. Am. Chem. Soc. 1996, 118, 7981-7988.
(19) Pilz, M.; Allwohn, J.; Willershausen, P.; Massa, W.; Berndt, A. Angew. Chem., Int. Ed. 1990, 29, 1030-1032.
(20) Computations: The structure of $\mathbf{3 a}$ was optimized at the B3LYP/6$311+\mathrm{G}^{* *}$ DFT level with the Gaussian 03 program (computational details are in the Supporting Information): Frisch, M. J.; et al. Gaussian 03, revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.

## JA075932I

